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Abstract A large number of extensions of Banach Contraction Mapping Principle are attempted by many authors 

in many research papers. Rakotch used a decreasing function 𝜓 on ℝ+ to [0,  1) for a contraction type condition 

and obtained a fixed point theorem. A slight variation of the Rakotch theorem is presented by Geraghty. In the 

theorem of Geraghty, the function 𝜓 of Rakotch satisfies the condition that 𝜓(𝑡𝑛) → 1 ⇒ 𝑡𝑛 → 0 whereas in 

Rakotch it is a decreasing function 𝜓: ℝ+ → [0,  1). Boyd and Wong obtained more general fixed point theorem 

by replacing the decreasing function in the theorem of Rakotch by an upper semi-continuous function. Matkowski 

in his fixed point theorem further modified the condition on the function 𝜓: ℝ+ → [0,  1) of Rakotch by defining 

𝜓: (0,  ∞) → (0,  ∞) to be monotone non-decreasing and satisfying the condition 𝑙𝑖𝑚
𝑛→∞

𝜓𝑛(𝑡) = 0 for all 𝑡 > 0. 

Browder, Meer and Keeler, Kirk, Suzuki, Alber and Rhoades extended the results further. Three fixed point 

theorems are proved in this article by taking 𝜓 to be an upper semi-continuous function from right. The function 

𝜓 is from the set of all positive real numbers to itself and appears out of the metric function as 𝜓(𝑑(𝑥, 𝑦)). 

Examples are provided to support the theorems. Finally the celebrated fixed point theorem by Kannan is 

generalized. In the next theorem an attempt has been made to take the function 𝜓 inside the metric. Precisely, 𝜓 

is defined to be function from a general metric space to itself. Thus in the next theorem it appears like 

𝑑(𝜓(𝑥), 𝜓(𝑦)). This theorem is also illustrated by an example. 

 

Keywords: Upper Semi-Continuous Function, Generalized Contractions, Fixed Point, T-Orbitally Complete 

Metric Space, Complete Metric Space. 
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I. Introduction 

Stefan Banach, a celebrated Mathematician from Poland, stated and proved the first astonishing fixed point 

theorem in 1922, known as the “Banach Contraction Mapping Principle” [2]. This theorem is the origin of Metric 

Fixed Point Theory. Fixed points, Banach Contraction Mapping Principle and Brower Fixed Point theorem are 

widely used in many branches of Mathematics. See some of them in [16]. Especially non-linear differential 

equations can be solved by using Banach Contraction Mapping Principle. Later on this principle has been 

generalized by many Mathematicians in many different ways. See Alber [1], Baillon [5], Kirk [6], Meer and 

Keeler [9], Rhoades [13], and Suzuki [15]. In fact vast literature is available regarding the generalization and 

extension of the noteworthy principle. In this research paper some generalizations of Banach Contraction Mapping 

Principle are proved. In these results we have modified the conditions of the Banach Contraction Mapping 

Principle and obtained three fixed point theorems. Kannan invented new type of contractions called Kannan 

Mappings. Kannan proved that his contractions are independent of Banach contractions and also proved that every 

Kannan mapping on a complete metric space has a unique fixed point [17]. Lj. B. Ćirić in [18] introduced 

Generalized Contractions and also proved Generalized Contractions include Banach Contractions and Kannan 

Contractions. Lj. B. Ćirić in the same research paper, proved a fixed point theorem which is a generalization of 

both Kannan and Banach Fixed Point Theorems. Lj. B. Ćirić diluted the condition of completeness of a metric 

space to T-Orbitally Completeness. In this research paper a fixed point theorem by using a somewhat light mode 

of Generalized Contractions of Lj. B. Ćirić is proved. This theorem can be illustrated by exhibiting examples from 

the metric spaces like ℝ+ and 𝑙2. For instance, an example of the metric space 𝑋 = [0,10] with the absolute value 

metric is given. 

II. Preliminaries and Definitions 

Definition 3.1 (Metric Space) [7]: - A “Metric Space” is a pair (𝑋,  𝑑), where 𝑋 is a set and 𝑑 is a metric on 𝑋 

(or distance function on 𝑋), that is, a function defined on 𝑋 × 𝑋 such that for all 𝑥,  𝑦,  𝑧 ∈ 𝑋 we have: 

(M1) 𝑑 is real-valued, finite and non-negative. 

(M2) 𝑑(𝑥,  𝑦) = 0 if and only if 𝑥 = 𝑦. 
(M3) 𝑑(𝑥,  𝑦) = 𝑑(𝑦,  𝑥)       (Symmetry). 

(M4) 𝑑(𝑥,  𝑦) ≤ 𝑑(𝑥,  𝑧) + 𝑑(𝑧,  𝑦)      (Triangle Inequality). 
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Example 3.1 [7]: - The set of all real numbers, taken with the usual metric defined by 𝑑(𝑥,  𝑦) = |𝑥 − 𝑦| is a 

metric space. 

Note 3.1 [12]: - It is important to note that if (𝑋,  𝑑) is a metric space and 𝐴 ⊆ 𝑋, then (𝐴,  𝑑) is also a metric 

space. 

Definition 3.2 [7]: - A “Fixed Point” of a mapping 𝑇: 𝑋 → 𝑋 of a set 𝑋 into itself is an  𝑥 ∈ 𝑋 which is mapped 

onto itself, that is 𝑇𝑥 = 𝑥. 
Definition 3.3 [14]: - Let (𝑋,  𝑑) be a metric space and let 𝑇 be a mapping on𝑋. Then 𝑇 is called a “Contraction” 

if there exists 𝑟 ∈ [0,1)such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋 

The following famous theorem is referred to as the Banach Contraction Mapping Principle. 

Theorem 3.1 (Banach) [2]: - Let (𝑋, 𝑑) be a complete metric space and let 𝑇 be a contraction on X . Then 𝑇 has 

a unique fixed point. 

Definition 3.4: - A sequence {𝑥𝑛}𝑛=1
∞  in a metric space (𝑋,  𝑑) is said to converge or to be convergent if there is 

an 𝑥 ∈ 𝑋 such that lim
𝑛→∞

𝑑(𝑥𝑛 ,  𝑥) = 0, 𝑥 is called the limit of {𝑥𝑛}𝑛=1
∞  and we write lim

𝑛→∞
𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥 as 𝑛 →

∞. 

Definition 3.5: - A sequence {𝑥𝑛}𝑛=1
∞  in a metric space (𝑋,  𝑑) is said to be a “Cauchy Sequence” is for every 𝜀 >

0 there is an 𝑁 = 𝑁(𝜀) such that 𝑑(𝑥𝑚 ,  𝑥𝑛) < 𝜀 for every 𝑚,  𝑛 ≥ 𝑁. 

Theorem 3.2: - Every convergent sequence in a metric space is a Cauchy sequence. 

Note 3.2: - The converse of the above theorem is not true in general. That is a Cauchy sequence in a metric space 

𝑋 may or may not converge in𝑋.  

Definition 3.6: - A metric space (𝑋,  𝑑) is said to be a “Complete Metric Space” if every Cauchy Sequence in 𝑋 

converges in 𝑋. 

Definition 3.7: - A function 𝜓: ℝ → [0,  ∞) is said to be an “Upper Semi-Continuous from right” if for any 

sequence {𝑡𝑛}𝑛=1
∞  converging to 𝑡 ≥ 0, limsup

𝑛→∞
𝜓(𝑡𝑛) ≤ 𝜓(𝑡). 

Example 3.2: - Define the function 𝜓: ℝ+ → [0,  ∞) as follows: 

𝜓(𝑡) = {
√𝑡, 𝑖𝑓 𝑡 ∈ [0,  1),

√𝑡 + 1, 𝑖𝑓 𝑡 ∈ [1,  ∞).
 

The function is discontinuous at 𝑡 = 1. We have 𝜓(1) = 2. As 𝑡 → 1 from right lim
𝑡→1

𝜓(𝑡) = 2 ≤ 2 and from left 

limsup
𝑡→1

𝜓(𝑡) = 1 ≤ 2. Thus the function is upper semi-continuous from right.  

Theorem 3.3 (Rakotch) [11]: - Let (𝑋,  𝑑)  be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋  satisfies 

𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝜓(𝑑(𝑥,  𝑦))𝑑(𝑥,  𝑦) for all 𝑥,  𝑦 ∈ 𝑋, where 𝜓 is a decreasing function on ℝ+ to [0,  1). Then 𝑇 has 

a unique fixed point. 

A slight variation of the Rakotch theorem 3.3 is given by Geraghty as follows. 

Theorem 3.4 (Geraghty) [4]: - Let (𝑋,  𝑑)  be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋 

satisfies𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝜓(𝑑(𝑥,  𝑦))𝑑(𝑥,  𝑦) for all 𝑥,  𝑦 ∈ 𝑋where 𝜓(𝑡𝑛) → 1 ⇒ 𝑡𝑛 → 0. Then 𝑇 has a unique fixed 

point. 

Theorem 3.5 (Boyd-Wong) [3]: - Let (𝑋,  𝑑) be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋 satisfies 

𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝜓(𝑑(𝑥,  𝑦)) for all 𝑥,  𝑦 ∈ 𝑋, where, 𝜓: ℝ → [0,  ∞)is upper semi continuous from the right and 

satisfies 0 ≤ 𝜓(𝑡) < 𝑡 for all 𝑡 > 0. Then 𝑇 has a unique fixed point in𝑋. 

Matkowski replaced the condition of upper semi-continuity on 𝜓
 
by the condition and stated and proved the 

following theorem. 

Theorem 3.6 (Matkowski) [8]: - Let (𝑋,  𝑑) be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋 satisfies 

𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝜓(𝑑(𝑥,  𝑦)) for all 𝑥,  𝑦 ∈ 𝑋, where, 𝜓: (0,  ∞) → (0,  ∞)is monotone non-decreasing and satisfies 

lim
𝑛→∞

𝜓𝑛(𝑡) = 0 for all 𝑡 > 0. Then 𝑇 has a unique fixed point in 𝑋. 

Meer and Keeler used a diverse approach and extended the theorem of Boyd and Wong as follows. 

Theorem 3.7 (Meer and Keeler) [9]: - Let (𝑋,  𝑑) be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋 satisfies 

the condition: for each𝜀 > 0, there exists 𝛿 > 0 such that for all 𝑥,  𝑦 ∈ 𝑋, 𝜀 ≤ 𝑑(𝑥,  𝑦) ≤ 𝜀 + 𝛿 ⇒ 𝑑(𝑇𝑥,  𝑇𝑦) ≤
𝜀. Then 𝑇 has a unique fixed point. 

Rhoades extended the Banach Contraction Mapping Principle as follows. 

Theorem 3.8 (Rhoades) [13]: - Let (𝑋,  𝑑) be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋  satisfies 

𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝑑(𝑥,  𝑦) − 𝜓(𝑑(𝑥,  𝑦)) for all 𝑥,  𝑦 ∈, where 𝜓: (0,  ∞) → (0,  ∞) is continuous and non-decreasing 

function such that 𝜓(𝑡) = 0 if and only if 𝑡 = 0. Then 𝑇 has a unique fixed point. 

Definition 3.5: Let 𝑇 maps a metric space 𝑋 into 𝑋. Then the metric space 𝑋 is said to “T-Orbitally Complete” if 

every Cauchy sequence of the form {𝑇𝑛𝑥: 𝑥 ∈ 𝑋}𝑛=1
∞  has a limit in 𝑋.  

Definition 3.9: Let (𝑋, 𝑑) be a metric space and let 𝑇be a mapping on 𝑋. Then 𝑇 is called “Kannan Mapping” if 

there exists 𝑟 ∈ [0,1/2)such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑇𝑥) + 𝑟𝑑(𝑦, 𝑇𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 
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Theorem 3.9 (Kannan) [16]: Let (𝑋,  𝑑)  be a complete metric space and let 𝑇: 𝑋 → 𝑋  be satisfy the 

condition  𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝑟{𝑑(𝑥,  𝑇𝑥) + 𝑑(𝑦,  𝑇𝑦)} , for all  𝑥,  𝑦 ∈ 𝑋 , where  𝑟 ∈ [0,  
1

2
) , then 𝑇  has unique fixed 

point in 𝑋. 
Lj. B. Ćirić introduced the following notion of Generalized Contractions and proved the subsequent theorem. 

Definition 3.10 [17]: Let (𝑋, 𝑑) be Metric Space and let 𝑇 be a mapping of 𝑋into itself. Then 𝑇 is said to be a 

𝜆 Generalized Contraction if for every 𝑥, 𝑦 ∈ 𝑋 there exists non-negative numbers 

𝑝(𝑥, 𝑦),  𝑞(𝑥, 𝑦),  𝑟(𝑥, 𝑦),  𝑠(𝑥, 𝑦) such that 𝑆𝑢𝑝
𝑥,𝑦∈𝑋

{𝑝(𝑥, 𝑦) + 𝑞(𝑥, 𝑦) + 𝑟(𝑥, 𝑦) + 2𝑠(𝑥, 𝑦)} = 𝜆 < 1 and  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑝𝑑(𝑥, 𝑦) + 𝑞𝑑(𝑥, 𝑇𝑥) + 𝑟𝑑(𝑦, 𝑇𝑦) + 𝑠{𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)} for all 𝑥, 𝑦 ∈ 𝑋. 
Theorem 3.10 [17]: Let 𝑇 be 𝜆 −generalized contraction of T-Orbitally Complete metric space 𝑋 into itself. Then 

1) There is a unique point in 𝑢 ∈ 𝑋which is a fixed point under T, 

2) 𝑇𝑛𝑥 → 𝑢 for every 𝑥 ∈ 𝑋, 

3) 𝑑(𝑇𝑛𝑥, 𝑢) ≤
𝜆𝑛

1−𝜆
𝑑(𝑥, 𝑇𝑥) 

III. Main Results 

Now some fixed point theorems are proved in which the function  𝜓: ℝ → [0,  ∞) which is an upper semi-

continuous from right is used. 

Theorem 4.1: - Let (𝑋,  𝑑)  be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋  satisfies 𝑑(𝑇𝑥,  𝑇𝑦) ≤
𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦)) for all 𝑥,  𝑦 ∈ 𝑋, where, 𝜓: ℝ → [0,  ∞)is upper semi continuous from the right and 

satisfies 0 ≤ 𝜓(𝑡) < 𝑡 for all𝑡 > 0, 𝜓(0) =. Also 0 < 𝛼 + 𝛽 < 1,  𝛼 > 0,  𝛽 > 0.  Then 𝑇 has a unique fixed 

point in𝑋. 

Proof: - Let 𝑥0 ∈ 𝑋 be an arbitrary but a fixed element in 𝑋. Define a sequence of iterates {𝑥𝑛}𝑛=1
∞  in 𝑋 by 𝑥1 =

𝑇𝑥0,  𝑥2 = 𝑇𝑥1 = 𝑇2𝑥0,  𝑥3 = 𝑇𝑥2 = 𝑇3𝑥0, . . . . . ,  𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇𝑛𝑥0,   . . . . … Now consider, 
𝑑(𝑥𝑛+1,  𝑥𝑛) < 𝑑(𝑇𝑥𝑛 ,  𝑇𝑥𝑛−1)

≤ 𝜓(𝛼𝑑(𝑥𝑛 ,  𝑇𝑥𝑛) + 𝛽𝑑(𝑥𝑛−1,  𝑇𝑥𝑛−1))

= 𝜓(𝛼𝑑(𝑥𝑛 ,  𝑥𝑛+1) + 𝛽𝑑(𝑥𝑛−1,  𝑇𝑥𝑛))

< 𝛼𝑑(𝑥𝑛 ,  𝑥𝑛+1) + 𝛽𝑑(𝑥𝑛−1,  𝑇𝑥𝑛)(∵ 𝜓(𝑡) < 𝑡)

 

Thus 

𝑑(𝑥𝑛+1,  𝑥𝑛) < 𝛼𝑑(𝑥𝑛 ,  𝑥𝑛+1) + 𝛽𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ (1 − 𝛼)𝑑(𝑥𝑛+1,  𝑥𝑛) < 𝛽𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ 𝑑(𝑥𝑛+1,  𝑥𝑛) <
𝛽

1−𝛼
𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ 𝑑(𝑥𝑛+1,  𝑥𝑛) < ℎ𝑑(𝑥𝑛−1,  𝑥𝑛).

  

Where, ℎ =
𝛽

1−𝛼
.  Here 0 < ℎ < 1  because 0 < 𝛼 + 𝛽 < 1,  𝛼 > 0,  𝛽 > 0.  Continue in this way to 

get 𝑑(𝑥𝑛+1,  𝑥𝑛) < ℎ𝑛𝑑(𝑥0,  𝑥1). Taking limit as 𝑛 → ∞, 𝑑(𝑥𝑛+1,  𝑥𝑛) → 0   (∵ 0 < ℎ < 1). Therefore {𝑥𝑛}𝑛=1
∞  is 

a Cauchy sequence in 𝑋. As 𝑋 is a complete metric space, there exists 𝑥 ∈ 𝑋 such that lim 
𝑛→∞

𝑥𝑛 = 𝑥. It is shown 

below that 𝑥 is a fixed point of 𝑇. As 𝑇 a is continuous function, 𝑥 = lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛−1 = 𝑇 ( lim
𝑛→∞

𝑥𝑛−1) = 𝑇𝑥. 

Therefore 𝑇𝑥 = 𝑥 and 𝑥 is a fixed point of 𝑇. Next to show that 𝑥 is unique fixed point of 𝑇. Let 𝑦 ∈ 𝑋 be another 

fixed point of 𝑇. Consider  
𝑑(𝑥,  𝑦) = 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦))

= 𝜓(𝛼𝑑(𝑥,  𝑥) + 𝛽𝑑(𝑦,  𝑦))        (∵ 𝑇𝑥 = 𝑥,  𝑇𝑦 = 𝑦)

= 𝜓(0)                          (𝑆𝑒𝑒 𝑀(2) 𝑜𝑓 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.1)

= 0                                                                (∵ 𝜓(0) = 0)

 

∴ 𝑑(𝑥,  𝑦) = 0 

Thus𝑥 = 𝑦, by M(2) of definition 3.1, and hence the fixed point of 𝑇 is unique. 

Theorem 4.2: - Let (𝑋,  𝑑)  be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋  satisfies 𝑑(𝑇𝑥,  𝑇𝑦) ≤
𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) for all 𝑥,  𝑦 ∈ 𝑋, where, 𝜓: ℝ → [0,  ∞) is upper semi continuous from the right 

and satisfies 0 ≤ 𝜓(𝑡) < 𝑡 for all𝑡 > 0, 𝜓(0) = 0. Also 0 < 𝛼 + 𝛽 < 1,  𝛼 > 0,  𝛽 > 0.  Then 𝑇 has a unique 

fixed point in𝑋. 

Proof: - Let 𝑥0 ∈ 𝑋 be an arbitrary but a fixed element in 𝑋. Define a sequence of iterates {𝑥𝑛}𝑛=1
∞  in 𝑋 by 𝑥1 =

𝑇𝑥0,  𝑥2 = 𝑇𝑥1 = 𝑇2𝑥0,  𝑥3 = 𝑇𝑥2 = 𝑇3𝑥0, . . . . . ,  𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇𝑛𝑥0,   . . . . . .  Now consider, 
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𝑑(𝑥𝑛+1,  𝑥𝑛) = 𝑑(𝑇𝑥𝑛 ,  𝑇𝑥𝑛−1)

≤ 𝛼𝜓(𝑑(𝑥𝑛 ,  𝑇𝑥𝑛)) + 𝛽𝜓(𝑑(𝑥𝑛−1,  𝑇𝑥𝑛−1))

= 𝛼𝜓(𝑑(𝑥𝑛 ,  𝑥𝑛+1)) + 𝛽𝜓(𝑑(𝑥𝑛−1,  𝑥𝑛))

< 𝛼𝑑(𝑥𝑛 ,  𝑥𝑛+1) + 𝛽𝑑(𝑥𝑛−1,  𝑥𝑛)(∵ 𝜓(𝑡) < 𝑡)

 

Thus, 

𝑑(𝑥𝑛+1,  𝑥𝑛) < 𝛼𝑑(𝑥𝑛 ,  𝑥𝑛+1) + 𝛽𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ (1 − 𝛼)𝑑(𝑥𝑛+1,  𝑥𝑛) < 𝛽𝑑(𝑥𝑛−1,  𝑥𝑛)
 

∴ 𝑑(𝑥𝑛+1,  𝑥𝑛) <
𝛽

1 − 𝛼
𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ 𝑑(𝑥𝑛+1,  𝑥𝑛) < ℎ𝑑(𝑥𝑛−1,  𝑥𝑛).
 

Where, ℎ =
𝛽

1−𝛼
.  Here 0 < ℎ < 1  because 0 < 𝛼 + 𝛽 < 1,  𝛼 > 0,  𝛽 > 0. Continue to get 

1 0 1( , ) ( , )n

n nd x x h d x x  . Taking limit as 𝑛 → ∞, gives 𝑑(𝑥𝑛+1,  𝑥𝑛) → 0. Therefore {𝑥𝑛}𝑛=1
∞  is a Cauchy 

sequence in 𝑋. As 𝑋 is a complete metric space, there exists 𝑥 ∈ 𝑋 such that lim 
𝑛→∞

𝑥𝑛 = 𝑥. We shall show that 𝑥 is 

a fixed point of 𝑇.  As 𝑇  a is continuous function we have,  𝑥 = lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛−1 = 𝑇 ( lim
𝑛→∞

𝑥𝑛−1) = 𝑇𝑥 . 

Therefore 𝑇𝑥 = 𝑥 and 𝑥 is a fixed point of 𝑇. Next we shall show that 𝑥 is unique fixed point of 𝑇. Let 𝑦 ∈ 𝑋 be 

another fixed point of 𝑇. Consider  
𝑑(𝑥,  𝑦) = 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦))

= 𝛼𝜓(𝑑(𝑥,  𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑦))         (∵ 𝑇𝑥 = 𝑥,  𝑇𝑦 = 𝑦)

= 𝛼𝜓(0) + 𝛽𝜓(0)              (𝑆𝑒𝑒 𝑀(2) 𝑜𝑓 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.1)

= 0                                                                        (∵ 𝜓(0) = 0)
∴ 𝑑(𝑥,  𝑦) = 0

 

Thus 𝑥 = 𝑦 and hence the fixed point of 𝑇 is unique. 

Example 4.1: - Consider the metric space (ℝ+,   | |), that is the metric space of non-negative real numbers with 

the absolute value metric. See example 3.1 and note 3.1. This metric space is a complete metric space. Define the 

function 𝑇: ℝ+ → ℝ+ by 𝑇𝑥 =
𝑥

13
 . Define the function 𝜓: ℝ+ → [0,  ∞)by 

𝜓(𝑡) = {

𝑡

4
,     𝑖𝑓 0 ≤ 𝑡 < 2,

𝑡

2
,     𝑖𝑓 2 ≤ 𝑡 < ∞

   

It is straight forward to see that the function 𝜓(𝑡)defined above is continuous at every point except at 𝑡 = 2. As 

𝑡 → 2 from right we have lim
𝑡→2

𝜓(𝑡) = 1 ≤ 1and from left we have limsup
𝑡→2

𝜓(𝑡) =
1

2
≤ 1, where 𝜓(2) = 1. Thus 

clearly the function 𝜓(𝑡) is upper semi-continuous from right. It also satisfies 0 < 𝜓(𝑡) < 𝑡 for 𝑡 > 0, because 

the  
𝑡

4
< 𝑡,  

𝑡

2
< 𝑡 ∀𝑡 ∈ ℝ+ . Also  𝜓(0) = 0 . Choose 𝛼 = 𝛽 =

1

3
.  Then we can verify that the condition in the 

theorem 4.1, that is 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦))  for all  𝑥,  𝑦 ∈ ℝ+ is satisfied. We observe 

that  𝑑(𝑇𝑥,  𝑇𝑦) = 𝑑 (
𝑥

13
,  

𝑦

13
) =

|𝑥−𝑦|

13
. Also 𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦)) = 𝜓 (

1

3
𝑑 (𝑥,  

𝑥

13
) +

1

3
𝑑 (𝑦,  

𝑦

13
)) =

𝜓 (
1

3
(

12𝑥

13
) +

1

3
(

12𝑦

13
)) = 𝜓 (

4(𝑥+𝑦)

13
). Now we consider all the three cases of values of 

4(𝑥+𝑦)

13  . 

Case1.  
4(𝑥+𝑦)

13
= 0.   

Case 2.  0 <
4(𝑥+𝑦)

13
< 2. 

Case 3.  2 ≤
4(𝑥+𝑦)

13
< ∞. 

Case 1. 
4(𝑥+𝑦)

13
= 0 . That is  𝑥 = 0,  𝑦 = 0 , because  𝑥 ≥ 0,  𝑦 ≥ 0.  Then 𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
=

|0−0|

13
=

0

13
= 0. 

And 𝜓 (
4(𝑥+𝑦)

13
) = 𝜓(0) = 0. Thus 𝑑(𝑇𝑥,  𝑇𝑦) = 0 ≤ 0 = 𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦)). 

Case 2. 0 <
4(𝑥+𝑦)

13
< 2 . That is 0 < 𝑥 + 𝑦 <

26

4
=

13

2
. Then 𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
. And 𝜓 (

4(𝑥+𝑦)

13
) =

4(𝑥+𝑦)

13

4
=

𝑥+𝑦

13
.  Clearly 

|𝑥−𝑦|

13
≤

𝑥+𝑦

13
for all 𝑥,  𝑦  satisfying  0 < 𝑥 + 𝑦 <

26

4
=

13

2
. Hence  𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
≤

𝑥+𝑦

13
=

𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦)). 

Case 3. 2 ≤
4(𝑥+𝑦)

13
< ∞. That is 

13

2
=

26

4
≤ 𝑥 + 𝑦 < ∞. Then  𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
. 𝜓 (

4(𝑥+𝑦)

13
) =

4(𝑥+𝑦)

13

2
=

2(𝑥+𝑦)

13
. 

Clearly 
|𝑥−𝑦|

13
≤

2(𝑥+𝑦)

13
for all 𝑥,  𝑦  satisfying  

26

4
≤ 𝑥 + 𝑦 < ∞ . Hence  𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
≤

2(𝑥+𝑦)

13
=

𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦)). 

Thus in all the cases we have 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝜓(𝛼𝑑(𝑥,  𝑇𝑥) + 𝛽𝑑(𝑦,  𝑇𝑦)). 
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Therefore the condition of the theorem 4.1 is satisfied. We observe that 𝑥 = 0 is the unique fixed point of 𝑇. 
Example 4.2: - Consider the metric space (ℝ+,   | |), that is the metric space of non-negative real numbers with 

the absolute value metric. This metric space is a complete metric space. Define the function 𝑇: ℝ+ → ℝ+and the 

function 𝜓: ℝ+ → [0,  ∞) as in example 4.1 above. Choose 𝛼 = 𝛽 =
1

3
. Then we can verify that the condition in 

the theorem 4.2, that is 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) for all 𝑥,  𝑦 ∈ ℝ+is satisfied. We observe 

that 𝑑(𝑇𝑥,  𝑇𝑦) = 𝑑 (
𝑥

13
,  

𝑦

13
) =

|𝑥−𝑦|

13
. Also 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) = 𝛼𝜓 (𝑑 (𝑥,  

𝑥

13
)) +

𝛽𝜓 (𝑑 (𝑦,  
𝑦

13
)) =

1

3
𝜓 (

12𝑥

13
) +

1

3
𝜓 (

12𝑦

13
). 

Now we consider the all the four cases of values of 
12𝑥

13
and 

12𝑦

13
. 

Case 1. 
12𝑥

13
= 0, 

12𝑦

13
= 0.  

Case 2. 
12𝑥

13
= 0, 

12𝑦

13
≠ 0.   

 Sub-case 1. 0 <
12𝑦

13
< 2.  

 Sub-case 2. 2 ≤
12𝑦

13
< ∞.   

Case 3.  
12𝑥

13
≠ 0, 

12𝑦

13
= 0. 

 Sub-case 1. 0 <
12𝑥

13
< 2.  

 Sub-case 2. 2 ≤
12𝑥

13
< ∞.  

Case 4.  
12𝑥

13
≠ 0, 

12𝑦

13
≠ 0. 

 Sub-case 1.  0 <
12𝑥

13
< 2,  0 <

12𝑦

13
< 2. 

 Sub-case 2.  0 <
12𝑥

13
< 2,  2 ≤

12𝑦

13
< ∞. 

 Sub-case 3.  2 ≤
12𝑥

13
< ∞,  0 <

12𝑦

13
< 2. 

 Sub-case 4.  2 ≤
12𝑥

13
< ∞,  2 ≤

12𝑦

13
< ∞. 

Case 1: -
12𝑥

13
=

12𝑦

13
= 0   , that is 𝑥 = 𝑦 = 0. Then 𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
=

|0−0|

13
=

0

13
= 0.And 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) +

𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) =
1

3
𝜓(0) +

1

3
𝜓(0) = 0 + 0 = 0. Thus 𝑑(𝑇𝑥,  𝑇𝑦) = 0 ≤ 0 = 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)). 

Case 2: -
12𝑥

13
= 0, 

12𝑦

13
≠ 0. That is 𝑥 = 0 and 𝑦 ≠ 0. 

Sub-case 1 of case 2: - 0 <
12𝑦

13
< 2. That is 0 < 𝑦 <

26

12
=

13

6
. Then 𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
=

|0−𝑦|

13
=

𝑦

13
. 

And 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) =
1

3
𝜓(0) +

1

3
𝜓 (

12𝑦

13
) = 0 +

1

3

(
12𝑦

13
)

4
=

𝑦

13
. Thus 𝑑(𝑇𝑥,  𝑇𝑦) =

𝑦

13
≤

𝑦

13
=

𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)). 

Sub-case 2 of case 2: -  2 ≤
12𝑦

13
. That is 

26

12
=

13

6
≤ 𝑦 < ∞. Then  𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
=

|0−𝑦|

13
=

𝑦

13
. 

And 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) =
1

3
𝜓(0) +

1

3
𝜓 (

12𝑦

13
) = 0 +

1

3

(
12𝑦

13
)

2
=

2𝑦

13
.  Thus  𝑑(𝑇𝑥,  𝑇𝑦) =

𝑦

13
≤

2𝑦

13
=

𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)). 

Case 3: - 
12𝑥

13
≠ 0, 

12𝑦

13
= 0. That is 𝑥 ≠ 0 and 𝑦 = 0. This case is similar to the case 2, with 𝑥 and 𝑦 interchanged. 

Case 4: -
12𝑥

13
≠ 0, 

12𝑦

13
≠ 0. That is 𝑥 ≠ 0and 𝑦 ≠ 0. 

Sub-case 1 of case 4: -  0 <
12𝑥

13
< 2,  0 <

12𝑦

13
< 2.  Then 𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
.  And 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) +

𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) =
1

3
𝜓 (

12𝑥

13
) +

1

3
𝜓 (

12𝑦

13
) =

1

3

(
12𝑥

13
)

4
+

1

3

(
12𝑦

13
)

4
=

𝑥+𝑦

13
. Thus  𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
≤

𝑥+𝑦

13
=

𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)). 

Sub-case 2 of case 4: -  0 <
12𝑥

13
< 2,  2 ≤

12𝑦

13
< ∞.  Then 𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
.  And 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) +

𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) =
1

3
𝜓 (

12𝑥

13
) +

1

3
𝜓 (

12𝑦

13
) =

1

3

(
12𝑥

13
)

4
+

1

3

(
12𝑦

13
)

2
=

𝑥+2𝑦

13
. 

𝑑(𝑇𝑥,  𝑇𝑦) =
|𝑥−𝑦|

13
≤

𝑥+2𝑦

13
= 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)). 

Sub-case 3 of case 4: -  2 ≤
12𝑥

13
< ∞,  0 <

12𝑦

13
< 2. This case is similar to the sub-case 2 above, with 𝑥 and 𝑦 

interchanged and we conclude that 𝑑(𝑇𝑥,  𝑇𝑦) =
|𝑥−𝑦|

13
≤

2𝑥+𝑦

13
= 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) 
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Sub-case 4 of case 4: -  2 ≤
12𝑥

13
< ∞,  2 ≤

12𝑦

13
< ∞.  Then 𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
.  And  𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) +

𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) =
1

3
𝜓 (

12𝑥

13
) +

1

3
𝜓 (

12𝑦

13
) =

1

3

(
12𝑥

13
)

2
+

1

3

(
12𝑦

13
)

2
=

2(𝑥+𝑦)

13
. Thus  𝑑(𝑇𝑥,  𝑇𝑦) =

|𝑥−𝑦|

13
≤

2(𝑥+𝑦)

13
=

𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)). 

Thus in all cases 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)). Thus the condition of the theorem 4.2 is satisfied. 

We observe that 𝑥 = 0 is the unique fixed point of 𝑇. 

Remark 4.1: - If we take   to be an identity mapping and 𝛼 = 𝛽 =
1

3
 in the theorems 4.1 and 4.2, then we get 

the Kannan Fixed Point Theorem [10] for 𝑟 =
1

3
, which states as follows: Let (𝑋,  𝑑) be a complete metric space 

and let 𝑇: 𝑋 → 𝑋 be satisfy the condition 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝑟{𝑑(𝑥,  𝑇𝑥) + 𝑑(𝑦,  𝑇𝑦)},  ∀ 𝑥,  𝑦 ∈ 𝑋, where 𝑟 ∈ [0,  
1

2
), 

then 𝑇 has unique fixed point in 𝑋. 
Theorem 4.3: Let (𝑋,  𝑑) be a complete metric space and suppose that 𝑇: 𝑋 → 𝑋 satisfies 

(A) 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) + 𝛾𝜓(𝑑(𝑥,  𝑦))  for all  𝑥,  𝑦 ∈ 𝑋 where, 𝜓: ℝ → [0,  ∞)  is 

upper semi-continuous from the right and satisfies 0 ≤ 𝜓(𝑡) < 𝑡 for all 𝑡 > 0, 𝜓(0) = 0. Also 0 < 𝛼 + 𝛽 + 𝛾 <
1,  𝛼 > 0,  𝛽 > 0,  𝛾 > 0.  Then 𝑇 has a unique fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋 be an arbitrary but a fixed element in 𝑋. Define a sequence of iterates {𝑥𝑛}𝑛=1
∞  in 𝑋 by 𝑥1 =

𝑇𝑥0,  𝑥2 = 𝑇𝑥1 = 𝑇2𝑥0,  𝑥3 = 𝑇𝑥2 = 𝑇3𝑥0, . . . . . ,  𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇𝑛𝑥0,   . . . . . .  
By the condition (A) on 𝑇 we get, 

𝑑(𝑥𝑛,  𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1,  𝑇𝑥𝑛)

≤ 𝛼𝜓(𝑑(𝑥𝑛−1,  𝑇𝑥𝑛−1)) + 𝛽𝜓(𝑑(𝑥𝑛 ,  𝑇𝑥𝑛)) + 𝛾𝜓(𝑑(𝑥𝑛−1,  𝑥𝑛))

= 𝛼𝜓(𝑑(𝑥𝑛−1,  𝑥𝑛)) + 𝛽𝜓(𝑑(𝑥𝑛 ,  𝑥𝑛+1)) + 𝛾𝜓(𝑑(𝑥𝑛−1,  𝑥𝑛))

< 𝛼𝑑(𝑥𝑛−1,  𝑥𝑛) + 𝛽𝑑(𝑥𝑛 ,  𝑥𝑛+1) + 𝛾𝑑(𝑥𝑛−1,  𝑥𝑛)(∵ 𝜓(𝑡) < 𝑡)
𝑇ℎ𝑢𝑠,

𝑑(𝑥𝑛,  𝑥𝑛+1) < 𝛼𝑑(𝑥𝑛−1,  𝑥𝑛) + 𝛽𝑑(𝑥𝑛 ,  𝑥𝑛+1) + 𝛾𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ (1 − 𝛽)𝑑(𝑥𝑛+1,  𝑥𝑛) < (𝛼 + 𝛾)𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ 𝑑(𝑥𝑛+1,  𝑥𝑛) <
𝛼 + 𝛾

1 − 𝛽
𝑑(𝑥𝑛−1,  𝑥𝑛)

∴ 𝑑(𝑥𝑛+1,  𝑥𝑛) < ℎ𝑑(𝑥𝑛−1,  𝑥𝑛)

 

Where, ℎ =
𝛼+𝛾

1−𝛽
.  Here 0 < ℎ < 1  because 0 < 𝛼 + 𝛽 + 𝛾 < 1,  𝛼 > 0,  𝛽 > 0,  𝛾 > 0.  Continue in this way to 

get  𝑑(𝑥𝑛+1,  𝑥𝑛) < ℎ𝑛𝑑(𝑥0,  𝑥1) . Taking limit as 𝑛 → ∞  gives, 𝑑(𝑥𝑛+1,  𝑥𝑛) → 0 (∵ 0 < ℎ < 1) . Therefore 

{𝑥𝑛}𝑛=1
∞  is a Cauchy sequence in 𝑋. As 𝑋 is a complete metric space, there exists 𝑥 ∈ 𝑋 such that lim 

𝑛→∞
𝑥𝑛 = 𝑥. It 

is now shown that 𝑥  is a fixed point of 𝑇.  As 𝑇  a is continuous function, 𝑥 = lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛−1 =

𝑇 ( lim
𝑛→∞

𝑥𝑛−1) = 𝑇𝑥. Therefore 𝑇𝑥 = 𝑥 and 𝑥 is a fixed point of 𝑇. Next to show that 𝑥 is unique fixed point of 𝑇. 

Let 𝑦 ∈ 𝑋 be another fixed point of 𝑇. Again by the condition (A),  
𝑑(𝑥,  𝑦) = 𝑑(𝑇𝑥,  𝑇𝑦) ≤ 𝛼𝜓(𝑑(𝑥,  𝑇𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑇𝑦)) + 𝛾𝜓(𝑑(𝑥,  𝑦))

= 𝛼𝜓(𝑑(𝑥,  𝑥)) + 𝛽𝜓(𝑑(𝑦,  𝑦)) + 𝛾𝜓(𝑑(𝑥,  𝑦))

= 𝛼𝜓(0) + 𝛽𝜓(0) + 𝛾𝜓(𝑑(𝑥,  𝑦))

= 𝛾𝜓(𝑑(𝑥,  𝑦))

< 𝛾𝑑(𝑥,  𝑦)

Thus,  𝑑(𝑥,  𝑦) < 𝛾𝑑(𝑥,  𝑦)

 

This is possible if and only if 𝑑(𝑥,  𝑦) = 0, because 𝛾 < 1. Thus 𝑥 = 𝑦 and hence the fixed point of 𝑇is unique. 

Example 4.3: Consider the complete metric space of all non-negative real numbers with absolute value metric. 

Suppose that  𝑇: 𝑋 → 𝑋 defined by 𝑇𝑥 =
𝑥

8
.  Let, 𝜓: ℝ → [0, ∞)  is defined by  𝜓(𝑡) =

𝑡

2
. The function 𝜓(𝑡)  is 

continuous (and hence upper semi-continuous from right), also 0 < 𝜓(𝑡) < 𝑡 for all 𝑡 > 0 , 𝜓(0) = 0. Let 𝛼 =

𝛽 = 𝛾 =
1

4
.  Then clearly 0 < 𝛼 + 𝛽 + 𝛾 =

3

4
< 1,  𝛼 > 0,  𝛽 > 0,  𝛾 > 0.  Observe that 𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑 (

𝑥

8
,

𝑦

8
) =

|𝑥−𝑦|

8
. Also 
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𝛼𝑑(𝑥, 𝑇𝑥) + 𝛽𝑑(𝑦, 𝑇𝑦) + 𝛾𝑑(𝑥, 𝑦)

=
1

4
𝜓 (𝑑 (𝑥,

𝑥

8
)) +

1

4
𝜓 (𝑑 (𝑦,

𝑦

8
)) +

1

4
𝜓(𝑑(𝑥, 𝑦))

=
1

4
𝜓 (

7𝑥

8
) +

1

4
𝜓 (

7𝑦

8
) +

1

4
𝜓(|𝑥 − 𝑦|)

=
1

4

(
7𝑥
8

)

2
+

1

4

(
7𝑦
8

)

2
+

1

4

|𝑥 − 𝑦|

2
=

7𝑥

64
+

7𝑦

64
+

|𝑥 − 𝑦|

8

=
7(𝑥 + 𝑦)

64
+

|𝑥 − 𝑦|

8
.

 

Thus clearly 𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑 (
𝑥

8
,

𝑦

8
) =

|𝑥−𝑦|

8
<

7(𝑥+𝑦)

64
+

|𝑥−𝑦|

8
= 𝛼𝑑(𝑥, 𝑇𝑥) + 𝛽𝑑(𝑦, 𝑇𝑦) + 𝛾𝑑(𝑥, 𝑦)for all 𝑥 ∈ ℝ+. 

The condition (A) of the theorem 4.3 is satisfied. 𝑥 = 0 is the unique fixed point of the function 𝑇. 
Theorem 4.4: Let (𝑋, 𝑑) be a T-Orbitally Complete metric space with respect to a mapping 𝑇: 𝑋 → 𝑋. Let   be 

the operation defined on the set 𝑋  by 𝛼 ∗ 𝑥  for 𝛼 ∈ ℝ and  𝑥 ∈ 𝑋 , such that 𝛼 ∗ 𝑥 ∈ 𝑋. Also let the metric 𝑑 

satisfies 𝑑(𝛼𝑥, 𝛼𝑦) = |𝛼|𝑑(𝑥, 𝑦) for any scalar 𝛼 ∈ ℝ. Further let there exist a number 𝑘 ∈ ℝ+ such that, 

(B) 𝑆𝑢𝑝
𝑥, 𝑦∈𝑋

(𝑝(𝑥,  𝑦) + 𝑞(𝑥,  𝑦) + 𝑟(𝑥,  𝑦) + 2𝑠(𝑥,  𝑦)) = 𝜆 <
1

𝑘
 for some non-negative 

numbers 𝑝(𝑥,  𝑦),  𝑞(𝑥,  𝑦),  𝑟(𝑥,  𝑦),  𝑠(𝑥,  𝑦), which may depend on 𝑥 and 𝑦, 

(C) For the function 𝜓: 𝑋 → 𝑋  defined by  𝜓(𝑥) = 𝑘𝑥,  𝑘 ∈ ℝ , 𝑇  satisfies the condition  𝑑(𝑇𝑥, 𝑇𝑦) ≤
𝑝𝑑(𝜓(𝑥), 𝜓(𝑦)) + 𝑞𝑑(𝜓(𝑥), 𝜓(𝑇𝑥)) + 𝑟𝑑(𝜓(𝑦), 𝜓(𝑇𝑦)) + 𝑠{𝑑(𝜓(𝑥), 𝜓(𝑇𝑦)) + 𝑑(𝜓(𝑦), 𝜓(𝑇𝑥))}  for all 

𝑥,  𝑦 ∈ 𝑋. 
Then 𝑇 has a unique fixed point in 𝑋. 
Proof: For the sake of simplicity, denote 𝛼 ∗ 𝑥  by 𝛼𝑥 . Let 𝑥0 ∈ 𝑋  be arbitrary and define a sequence, 𝑥1 =
𝑇𝑥0,  𝑥2 = 𝑇𝑥1,  𝑥3 = 𝑇𝑥2,   . . . . . ,  𝑥𝑛+1 = 𝑇𝑥𝑛 ,   . . . . ..  Now by using the condition (C) in the statement of the 

theorem and triangle inequality, gives 
𝑑(𝑥𝑛 , 𝑥𝑛+1)

= 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)

≤ 𝑝𝑑(𝜓(𝑥𝑛−1), 𝜓(𝑥𝑛)) + 𝑞𝑑(𝜓(𝑥𝑛−1), 𝜓(𝑇𝑥𝑛−1)) + 𝑟𝑑(𝜓(𝑥𝑛), 𝜓(𝑇𝑥𝑛)) + 𝑠{𝑑(𝜓(𝑥𝑛−1), 𝜓(𝑇𝑥𝑛)) + 𝑑(𝜓(𝑥𝑛), 𝜓(𝑇𝑥𝑛−1))}

= 𝑝𝑑(𝜓(𝑥𝑛−1), 𝜓(𝑥𝑛)) + 𝑞𝑑(𝜓(𝑥𝑛−1), 𝜓(𝑥𝑛)) + 𝑟𝑑(𝜓(𝑥𝑛), 𝜓(𝑥𝑛+1)) + 𝑠{𝑑(𝜓(𝑥𝑛−1), 𝜓(𝑥𝑛+1)) + 𝑑(𝜓(𝑥𝑛), 𝜓(𝑥𝑛))}

= 𝑝𝑑(𝑘𝑥𝑛−1, 𝑘𝑥𝑛) + 𝑞𝑑(𝑘𝑥𝑛−1, 𝑘𝑥𝑛) + 𝑟𝑑(𝑘𝑥𝑛 , 𝑘𝑥𝑛+1) + 𝑠{𝑑(𝑘𝑥𝑛−1, 𝑘𝑥𝑛+1) + 𝑑(𝑘𝑥𝑛 , 𝑘𝑥𝑛)}

= (𝑝𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑞𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑟𝑘)𝑑(𝑥𝑛 , 𝑥𝑛+1) + (𝑠𝑘){𝑑(𝑥𝑛−1, 𝑥𝑛+1) + 𝑑(𝑥𝑛 , 𝑥𝑛)}

= (𝑝𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑞𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑟𝑘)𝑑(𝑥𝑛 , 𝑥𝑛+1) + (𝑠𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛+1)

≤ (𝑝𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑞𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑟𝑘)𝑑(𝑥𝑛 , 𝑥𝑛+1) + (𝑠𝑘){𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥𝑛+1)}(Triangle Inequality)

 

Thus we have, 
𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ (𝑝𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑞𝑘)𝑑(𝑥𝑛−1, 𝑥𝑛) + (𝑟𝑘)𝑑(𝑥𝑛 , 𝑥𝑛+1) + (𝑠𝑘){𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥𝑛+1)}

⇒ [1 − 𝑟𝑘 − 𝑠𝑘]𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑝𝑘 + 𝑞𝑘 + 𝑠𝑘]𝑑(𝑥𝑛−1, 𝑥𝑛)

⇒ 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤
𝑝𝑘 + 𝑞𝑘 + 𝑠𝑘

1 − 𝑟𝑘 − 𝑠𝑘
𝑑(𝑥𝑛−1, 𝑥𝑛)

⇒ 𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤
𝑝 + 𝑞 + 𝑠

(
1
𝑘

) − 𝑟 − 𝑠
𝑑(𝑥𝑛−1, 𝑥𝑛)

⇒ 𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ ℎ𝑑(𝑥𝑛−1, 𝑥𝑛)

 

Here ℎ =
𝑝+𝑞+𝑠

(
1

𝑘
)−𝑟−𝑠

< 1   (by condition (B) in the theorem). Repeating this argument, ultimately gives 

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ ℎ𝑛𝑑(𝑥0, 𝑥1)                                         (1) 

When we take the limit as 𝑛 → ∞ we get ℎ → 0 as ℎ < 1. Thus it follows from the equation (1) that {𝑥𝑛}𝑛=1
∞  is a 

Cauchy Sequence. Since 𝑋 is T-Orbitally Complete, there is a point 𝑥 ∈ 𝑋, such that 

 𝑥 = lim
𝑛→∞

𝑇𝑛𝑥0 = lim
𝑛→∞

𝑥𝑛                                                 (2) 

We shall show that 𝑥 is a fixed point of 𝑇. Using the conditions (B) and (C) in the statement of the theorem and 

triangle inequality we get, 
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          

          

1 1

1 1

( , )

( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )

( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )

, , , , ,

(

n

n n n n n

n n n n n

n n n n n

d Tx Tx

pd x x qd x Tx rd x Tx s d x Tx d x Tx

pd x x qd x Tx rd x x s d x x d x Tx

pd kx kx qd kx kTx rd kx kx s d kx kx d kx kTx

p

         

          
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1 1

1 1 1 1

1 1
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( ) , ( ) , ( , ) ( ) , ( ) , ,

( ) , ( , ) ( ) ( , ) ( ) ( , ) ( ) ,

( ) , ( ,

n n n n n

n n n n n n n

n n n n n n

n

k d x x qk d x Tx rk d x x sk d x x d x Tx

pk d x x qk d x x d x Tx rk d x x sk d x x d x Tx

pk d x x qk sk d x x qk d Tx Tx rk d x x sk d x Tx

pk d x x qk sk d x x

 

   

 

   

     

     

    

       

 

  

1 1

1 1

1 1

1 1
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qk d Tx Tx rk d x x sk d Tx Tx d Tx x

pk d x x qk sk d x x qk sk d Tx Tx rk sk d x x

d x x d x x d Tx Tx d x x

d x x d x x d x x d Tx Tx

   

 

 

 

 

 

   

      

   

   
 

Consequently,  

  

    

  

1 1

1 1

1 1

( , ) , ( , ) ( , ) ( , )

1 ( , ) , ( , ) ( , )

( , ) , ( , ) ( , ) .
1

n n n n n n

n n n n n

n n n n n

d Tx Tx d x x d x x d x x d Tx Tx

d Tx Tx d x x d x x d x x

d Tx Tx d x x d x x d x x

 

 





 

 

 

   

    

   
  

Taking limit as𝑛 → ∞, lim
𝑛→∞

𝑑(𝑇𝑥, 𝑇𝑥𝑛) ≤
𝜆

1−𝜆
lim

𝑛→∞
{𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑥, 𝑥𝑛+1) + 𝑑(𝑥𝑛, 𝑥𝑛+1)} = 0 

(by equation (2) and the fact that {𝑥𝑛}𝑛=1
∞  is a Cauchy Sequence). Thus 𝑇𝑥 = lim

𝑛→∞
𝑇𝑥𝑛 = lim

𝑛→∞
𝑥𝑛+1 = 𝑥. We 𝑇 has 

a fixed point 𝑥 ∈ 𝑋. 
Uniqueness: Let there is 𝑦 ∈ 𝑋 such that 𝑇𝑦 = 𝑦. Again using the conditions (B) and (C), 

𝑑(𝑥, 𝑦)

= 𝑑(𝑇𝑥, 𝑇𝑦)

≤ 𝑝𝑑(𝜓(𝑥), 𝜓(𝑦)) + 𝑞𝑑(𝜓(𝑥), 𝜓(𝑇𝑥)) + 𝑟𝑑(𝜓(𝑦), 𝜓(𝑇𝑦)) + 𝑠{𝑑(𝜓(𝑥), 𝜓(𝑇𝑦)) + 𝑑(𝜓(𝑦), 𝜓(𝑇𝑥))}

= 𝑝𝑑(𝜓(𝑥), 𝜓(𝑦)) + 𝑞𝑑(𝜓(𝑥), 𝜓(𝑥)) + 𝑟𝑑(𝜓(𝑦), 𝜓(𝑦)) + 𝑠{𝑑(𝜓(𝑥), 𝜓(𝑦)) + 𝑑(𝜓(𝑦), 𝜓(𝑥))}

= 𝑝𝑑(𝑘𝑥, 𝑘𝑦) + 𝑠{𝑑(𝑘𝑥, 𝑘𝑦) + 𝑑(𝑘𝑦, 𝑘𝑥)}

= (𝑝𝑘)𝑑(𝑥, 𝑦) + 2(𝑠𝑘)𝑑(𝑥, 𝑦)

= [𝑝𝑘 + 2(𝑠𝑘)]𝑑(𝑥, 𝑦)

≤ 𝜆𝑑(𝑥, 𝑦)

 

Thus𝑑(𝑥, 𝑦) ≤ 𝜆𝑑(𝑥, 𝑦) .

 

This implies that [1 − 𝜆]𝑑(𝑥, 𝑦) ≤ 0.  That is 𝑥 = 𝑦.  Hence the fixed point of 𝑇  is 

unique.

 

Example 4.4: Consider the metric space 𝑋 = [0,10] with the usual metric 𝑑 of absolute value. That is 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦|  for all 𝑥, 𝑦 ∈ 𝑋. 𝑑  satisfies 𝑑(𝛼𝑥, 𝛼𝑦) = |𝛼𝑥 − 𝛼𝑦| = |𝛼||𝑥 − 𝑦| = |𝛼|𝑑(𝑥, 𝑦)  for all 𝑥, 𝑦 ∈ 𝑋.  Define 

𝑇: 𝑋 → 𝑋 by 𝑇𝑥 =
3

4
𝑥 for all 𝑥 ∈ 𝑋. Then 𝑋 is T-Orbitally Complete metric space. Then for𝑘 =

1

2
, observe that 

1) There exists numbers 𝑝(𝑥, 𝑦) =
3

2
,  𝑞(𝑥, 𝑦) =

1

10
,  𝑟(𝑥, 𝑦) =

1

10
, 𝑠(𝑥, 𝑦) =

1

10
 such that 

𝑆𝑢𝑝
𝑥,𝑦∈𝑋=[0,10]

{𝑝 + 𝑞 + 𝑟 + 2𝑠} = 𝑆𝑢𝑝
𝑥,𝑦∈𝑋=[0,10]

{
3

2
+

1

10
+

1

10
+ 2

1

10
} =

19

10
= 1.9 < 2 =

1

(
1
2

)
=

1

𝑘
. 

2) For the function 𝜓: 𝑋 → 𝑋 defined by 𝜓(𝑥) = 𝑘𝑥 =
1

2
𝑥 for all𝑥 ∈ 𝑋, we have 

𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑 (
3

4
𝑥,

3

4
𝑦) = |

3

4
𝑥 −

3

4
𝑦| =

3

4
|𝑥 − 𝑦|.And 
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𝑝𝑑(𝜓(𝑥), 𝜓(𝑦)) + 𝑞𝑑(𝜓(𝑥), 𝜓(𝑇𝑥)) + 𝑟𝑑(𝜓(𝑦), 𝜓(𝑇𝑦)) + 𝑠{𝑑(𝜓(𝑥), 𝜓(𝑇𝑦)) + 𝑑(𝜓(𝑦), 𝜓(𝑇𝑥))}

=
3

2
𝑑(𝜓(𝑥), 𝜓(𝑦)) +

1

10
𝑑 (𝜓(𝑥), 𝜓 (

3

4
𝑥)) +

1

10
𝑑 (𝜓(𝑦), 𝜓 (

3

4
𝑦)) +

1

10
{𝑑 (𝜓(𝑥), 𝜓 (

3

4
𝑦)) + 𝑑 (𝜓(𝑦), 𝜓 (

3

4
𝑥))}

=
3

2
𝑑 (

1

2
𝑥,

1

2
𝑦) +

1

10
𝑑 (

1

2
𝑥,

1

2

3

4
𝑥) +

1

10
𝑑 (

1

2
𝑦,

1

2

3

4
𝑦) +

1

10
{𝑑 (

1

2
𝑥,

1

2

3

4
𝑦) + 𝑑 (

1

2
𝑦,

1

2

3

4
𝑥)}

=
3

2

1

2
𝑑(𝑥, 𝑦) +

1

10

1

2
𝑑 (𝑥,

3

4
𝑥) +

1

10

1

2
𝑑 (𝑦,

3

4
𝑦) +

1

10

1

2
{𝑑 (𝑥,

3

4
𝑦) + 𝑑 (𝑦,

3

4
𝑥)}

=
3

4
|𝑥 − 𝑦| +

1

20
(

1

4
𝑥) +

1

20
(

1

4
𝑦) +

1

20
{

|4𝑥−3𝑦|+|4𝑦−3𝑥|

4
}

Thus clearly 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑝𝑑(𝜓(𝑥), 𝜓(𝑦)) + 𝑞𝑑(𝜓(𝑥), 𝜓(𝑇𝑥)) + 𝑟𝑑(𝜓(𝑦), 𝜓(𝑇𝑦)) + 𝑠{𝑑(𝜓(𝑥), 𝜓(𝑇𝑦)) +
𝑑(𝜓(𝑦), 𝜓(𝑇𝑥))} for all 𝑥, 𝑦 ∈ 𝑋. The conditions (B) and (C) of the theorem 4.4 are satisfied. We see that 𝑥 = 0 

is the unique fixed point of 𝑇 in 𝑋. 
Remark 4.2: In the theorem 4.2, 𝑘 = 1gives the Lj. B. Ćirić theorem 3.10. It is also concluded that Kannan fixed 

point theorem [10] is obtained by replacing a semi-continuous function by the identity function and taking the 

Kannan constant 1/3 in the theorems 4.1 and 4.2.  
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